THE APPLICATION OF
SOFTWARE
ENGINEERING
PRINCIPLES IN A DATA
MIGRATION PROJECT

AN ARTICLE SUBMITTED BY GUY SIMONIAN
OF COTAL SYSTEMS, INC.




THE APPLICATION OF SOFTWARE
ENGINEERING PRINCIPLES IN A
DATA MIGRATION PROJECT

AN ARTICLE SUBMITTED BY GUY SIMONIAN OF COTAL SYSTEMS 860-
523-4567, COTAL@DELPHI.COM 03/26/97 10:57 AM

keywords: software engineering, data migration, Year 2000, CASE, C++, Oracle

SCOPE

In 1988 I had the privilege of being one of the charter members of Digital Equipment’s Software
Engineeting partner program. In that capacity and for following 5 years I dealt on a regular basis with
process, products, and people involved in building new systems and reengineering old ones. At that
time, my efforts were split between; 1) designing the architecture of the SEE’s (software engineering
environments) for large system proposals, and 2) conducting software quality assurance audits. As an
independent consultant, I have been fortunate to have been able to apply in practice many of the
principles I espoused. This document how those principles were applied, what I did, bow it was done,
and why it was done.

A QUALITY DIRECTIVE FOR SOFTWARE ENGINEERING

My engagement began in September of 1996. Fortunately, the director of data processing, who is
also one of the founding members of the company, had designed several large systems and was an avid
proponent of Relational System’s Extended Relational Architecture (ERA). As W.E. Deming stated,
quality starts at the top of an organization, and while managers may not actually perform the work, they
must establish the goals and set the priorities.! The director understood that adherence the principles
of the methodology, be it database architecture or software design for data migration was critical to the
pursuit of quality. His directive to me at the time was to work in the area of the company that needed
the most help, client conversions. I was to enable it with technology in such a way as to make the data
migration process simple to perform and easy to replicate. I was to upgrade the quality of the systems
involved while maintaining the exiting schedule for new customers. It was clear from that meeting that
the company’s growth and very existence hinged upon the ability of converting new customers quickly
and efficiently. It was also apparent that to revamp the existing conversion process while dealing with a
demanding and ever increasing workload would be a challenge. A considerable amount of effort had
gone into the first three migrations that had taken place before I had arrived. Evety new client however
demanded a near heroic undertaking to achieve timely results.

SOFTWARE ENGINEERING PRINCIPLES APPLIED

The quality system I intended to build would have to adhere to many of the basic principles of
good software engineering practices that have proven successful. The first four, Coupling, Complexity,
Cohesion, and Shape generally form the basis for good design. Reuse is one result of good design, and
is the principal component responsible for high productivity. Low Defect rates are another objective of
good design, and is another metric used to indicate productivity.




COUPLING

Coupling of software modules refers to the quantity and type of interdependence between modules.
‘Loose’ coupling typically involves data coupling, for example, file sharing, while “Tight’ coupling would
include parameter coupling, for example, global variable usage.? Thus low or ‘loose’ coupling is
desirable.

COMPLEXITY

Complex programs are difficult to understand and maintain. Nested-If’s, complex data structures
and lack of naming conventions all conttibute unnecessarily to complex routines. Complexity
algorithms, for example Halstead’s Software Science, McCabe’s Cyclomatic Complexity Metric and
others use rules based methods to produce a numerical representation of a module’s complexity.
Several re-engineering vendor tools actually can parse through an existing system, and build a color
coded chart of the system. Overall size as measured in lines of code is another complexity metric.
Thus, low complexity is desired.

COHESION

Cohesion of a software module refers to the ability of all of its tasks to perform one function well.?
Highly functional modules are less error prone. Modules that perform 2 or more functions have low
cohesion. Thus high cohesion is desirable.

SHAPE

Shape refers to the calling structure of the modules in the system. Psychological studies of
“chunking” theory have suggested the number of 7 as optimal®. Also called fan-out ot span of control, by
experts’, a practical range is between 5 and 10. A pyramidal shape where the top module calls 7 which
in turn call 7 each 1s destred.

REUSE

The largest single factor that affects programmer productivity is the ability to reuse software
modules. NCR for example, had an objective of 90% reuse on a recent project.5 The projections for
the OSI environment stated that a client conversion would be performed every two weeks meant
effectively that a new software system had to be delivered every two weeks. Thus, highly reusability for
both modules and the entire system is desired.

DEFECTS

Software defects can be caused by a variety of reasons, ranging from misinterpreting the business
specifications to technical syntax errors. The cost or time it takes to repair software defects increases
greatly with when they are identified along the process time line.” Obviously, low defects are desired,
and defects found and corrected eatly in the process are desired over those handled later in the process.




OLD DATA MIGRATION PROCESS

The existing process for data migration that I was given consisted of five steps. Over time, I was
able to eliminate three of these steps, thereby greatly reducing both the coding time and the data
migration elapsed time.

OLD PROCESS DESCRIBED

1. Copy data from tape to disk.

2. Use SQL Windows® application, along with C++ dlP’s, Windows based initialization files to
build a comma delimited flat file.

3. Use other C++ diI’s and a different SQL Windows application or manually build scripts and
run them using SQL Studio®, Wintalk®, or SQLPlus® to build the empty tables.

4. Manually define the SQL control files needed by SQL* Load® to populate the tables, column
names, and data types.

5. Use a custom application, a front end that handles multiple files and tables to SQL* Load to
populate the Oracle® schema.

OLD PROCESS & COMPLEXITY

The old process employed low level function calls that performed adequately, and which may have
benefited by more use of structures and less use of pointers and bit level manipulation. A function
that was most certainly more complex than needed were those that determined record types and
called appropriate functions.

In Figure 1, one module switches processing based on a global structure defined elsewhere which
carries the record type. It uses a symbol also defined elsewhere to branch to a set of instructions
which perform the following;

a) determine which data structure to deal with based on a structure defined elsewhere

b) move data from the file buffer to a character data type

¢) call one or more functions to unpack or manipulate that data,

d) open a data file using a stream pointer defined elsewhere

€) write that data element to the file.

This particular module went on for 858 lines, had 38 case statements many with nested if’s and for-
next loops, opened 38 different files, using approximately 800 different symbols. Note also the
ambiguous naming conventions. On the positive side, it only called 6 different functions.




FIGURE 1

VOID convert_trailer_record_900_939(unsigned char ** p_trailer long structure, int vli)
{

char cBuffer [200];

unsigned char cBuffer2 [200];
unsigned char cBufferArea [200];
unsigned char *cBuffer3;
unsigned char date[7];
unsigned char *datework;
unsigned char testdate[7];
unsigned char testdateCC[9];
int I vli;

int vli_indx;

int vli_indx_work;

int vli_indx_work2;
datework = testdate;

cBuffer3 = cBufferArea;

switch (structure)

case DLRTRLR_900:
sprintf(cBuffer,"%s,", GO01_ACCTKEY);
write_file(&dlrtrlr900stream,"900_dlrt.dat" cBuffer);
sprintf(cBuffer,"%s,", GO01A_BRNBR);
write_file(8dletrlr900stream NULL, cBuffer);
sprintf(cBuffer,"%s,", GO0O1B_SEQNBR);
write_file(&dlrtrlr900stream, NULL, cBuffer);
sprintf(cBuffer,"%s,", GO01C_ACCTNBR);
write_file(8&dlrtrlr900stream, NULL, cBuffer);
ncrK2Char( *(p_trailer) + 2, T900_DLRTRLR_data.C002_TXNST, 1 );
sprintf(cBuffer,"%s,", TOOO_DLRTRLR_data.C002_TXNST);

ncrK2Char( *(p_trailer) + 107, cBuffer2, 3 );
cBuffer3 = cBufferArea;
cBuffer3=convert_to_float(cBuffer2,2);
sprintf(cBuffer,"%s,", cBuffer3);
write_file(&dlrtrlr900stream,NULL,cBuffer);

case LNOPTRLR_904:
sprintf(cBuffer,"%s,", GO01_ACCTKEY);
write_file(&lnoptrlr904stream,"904_Inop.dat",cBuffer);
sprintf(cBuffer,"%s,", GO01A_BRNBR);
write_file(&lnopttlr904stream NULL cBuffer);




OLD PROCESS & SIZE COMPLEXITY

The old process used a lot of code to do a little work. The use of the fourth generation GUI for
example added little value to the process. The ‘end user’ so to speak were the same programmers
that were constructing the software application, so no training or orientation was requited. The
input file parameters found in the .INI file stayed fixed throughout the duration of the process, so
the coding overhead associated with the calls to GetPrivateProfileString that accessed the .INI file
were unnecessary. The amount of coding required to build this application included;

1. Step 1 required no coding.

2. Step 2 required 2 source modules lines, and 2 header files occupying 16,647 lines.

3. Step 3 was constructed manually, one line for each column definition, using 2000 lines of code.
4, Step 4 was comprised of 45 control files occupying 2192 lines of code.

5. Step 5 required no coding.

In total, 20,839 lines of code ate required by this process.

OLD PROCESS & COUPLING

The old process employed almost all levels of coupling, though predominantly loose coupling.
Data files were used to set program parameters, pointers to file input buffers determined the
current section of data being migrated, header files indicated were overused to define symbols and
global variables. Parameter passing in function headers ranged between 3 and 7 parameters. With
the exception of the header files, loose coupling predominated. There was just too much coupling
required by the current architecture.

OLD PROCESS & COHESION

The tasks of the low level modules performed one function, and therefore had high cohesion. See
Figure 2 for an example. The higher level modules, like the one shown in Figure 1 performed more
than one function. In fact to desctibe the Figure 1 module we would have to include four tasks as
in, “Determine which record structure is currently being handled, then create the appropriate file.
Process the data items as needed, then populate the open file with the translated data.” This
module therefore had low cohesion.




FIGURE 2

/* This function checks for invalid month end dates and adjusts the date accordingly.
Currently assumes YYMMDD format for input and return value. */

void check_mend(unsigned char *date)
{
int day;

int month;

int year;

unsigned char cbuffer|[3];
strepy(cbuffer,date+4);
day=atoi(cbuffer);
memmove(cbuffer,date+2,2);
memset(cbuffer+2,\0',1);
month=atoi{cbuffer);
memmove(cbuffer,date,2);
memset(cbuffer+2,'\0',1);
year=atoi(cbuffer);
switch(month)

case 2:
if (day < 29)
break;
if (((year % 4 == 0) && (year % 100 !=0)) || (year % 400 ==0))
memmove(date+4,"29",2);
else
memmove(date+4,"28",2);
break;
case 4:
case 6:
case 9:
case 11:
if(day > 30)
memmove(date+4,"30",2);
break;
default:
break;
}

OLD PROCESS & SHAPE

From a navigation perspective, the compiled module portion of this program consisted of two
source files and two header files, one source that was 15,000 lines long, and the other with 1400
lines. The shape of this process could be described as series of columns standing alone, rather
than a pyramid building upon its base.




OLD PROCESS & REUSE

Of the entire 20,839 lines of custom code written for the project, 2107 lines, or just 10% is
reusable.

OLD PROCESS & DEFECT CORRECTION

The existing process impeded the efficiency of unit testing. Unit testing is tequired to petform
tasks like the implementation of routines to handle new data types, for example, sign packed data, Julian
Date types, etc,

a) The presence of the SQL Windows in combination with the C code implemented as a DLL
made use of the Visual C++ debugger difficult and impractical for step 2 testing. Physical
examination of the comma delimited files produced by step 2 could reveal some of the defects,
but not all of them.

b) Syntax errors in step 3 would be found immediately as the SQL executed to build the tables.
Size or format errors induced here, however, would not be found until steps 4 or 5.

c) Errors would also crop up in the .CTL load files needed in step 4. An example of the control
file syntax is found in Figure 3. Consequently, as testing was pushed out to the later steps, the
time to correct defects went up exponentially.

d) Load errors uncovered after running step 5 for 2 or 3 hours may have been mduced by coding
errors in step 2. The C coding etror would then be corrected, and steps 2 through 5 rerun.

FIGURE 3

LOAD DATA INFILE 'SVEDF1.DAT' REPLACE
INTO TABLE SVFDF1 TRAILING NULLCOLS

(
FILE_ID POSITION (1:6) ,
SAVINGS_MAJOR_ACCOUNT_TYPE POSITION (7:8)
SAVINGS_ACCOUNT_NUMBER POSITION (9:22),
EFFECTIVEPLACED_DATE POSITION (23:30),
SEQUENCE_ID POSITION (31:33),
TYPE_OF_FLOAT POSITION (34:37),
FLOAT_AMOUNT POSITION (38:49) ZONED (12,2),
TOTAL_AMOUNT POSITION (50:61) ZONED (12,2),

SPLIT_FLAG POSITION (62:62),




NEW DATA MIGRATION PROCESS

NEW PROCESS DESCRIBED

1. Copy data from tape to disk.

2. Use one C++ program to build the Oracle tables and columns, mine the incoming data, and
load the data to that schema.

build the database

schema, verify the Load data to
Oracle

Strip data
from tape to
disk.

incoming data

NEW PROCESS & COMPLEXITY

The most highly complex modules like the one shown in Figure 1 were targeted for re-engineering
since that could benefit the most from reduced complexity.

Figure 4 shows the new LAYOUT module. It’s function could be described as the following;
a) Create the Oracle table for this particular record
b) Process the data items on the basis of offset, length, precision, and type

This particular module was 231 lines long, had two if-then-else statements, and called 5 different
functions.

10




FIGURE 4

VOID convert_Ind40(unsigned char *disk_record)
{

static int second_Pass_Ora_Flag; //static to each routine

table_build(“LNID40”,second_Pass_Ora_Flag);
rec_num(); //grab current record number
munge.xlate (Rec_Num_Key, 0,18, 'u',0,"Rec_Num_Key"); // write to database

// parameters below are disk buffer, starting position, length, type, precision, Field Name
munge.xlate(disk_record,2,4,'E',0,"BINARY_LENGTH");
munge.xlate(disk_record,6,2,'E',0,"SUBSYSTEM_NUMBER");
munge.xlate(disk_record,8,4,'E',0,"BANK_NUMBER");
munge.xlate(disk_record,12,20,'E',0,"ACCOUNT_NUMBER");
munge.xlate(disk_record,32,4,'E',0,"RECORD_TYPE");
munge.xlate(disk_record,36,12,'U'4,"PREVIOUS_RATE");
munge.xlate(disk_record,48,2,'E',0,"RECAP");
munge.xlate(disk_record,50,2,'E",0,"INSTRUCT_EXP");
munge.xlate(disk_record,52,2E',0,"TYPE_INQUIRY");

NEW PROCESS & SIZE COMPLEXITY

Seven programs now comprise the data migration program set:
xxxx.cpp This is the main function that determines the file set to be translated., 284 lines

conv.cpp sets the navigation logic to parse through the file being translated, 1044 lines

11




layout.cpp 'lays out' the offsets of the fields of the record being processed, 5975 lines

putout.cpp handles optional comma delimited output files classes, 2242 lines

munge.cpp  Invokes the translation routines for the data being processed, 653 lines

func.c houses specific routines for bit and character manipulation, 2037 lines

orai.c has low level calls to the Oracle Call Interface, 235 lines

The total lines of code including these files and 3 header files (352 lines) is 12,822 lines. Several low
level routines that performed similar tasks with slight vatiations (unpacking packed numbers, with or

without signs, signs at the front or rear of the field), were combined into one module (see Figure 5A &
5B). This system is now 40% smaller than the old system yet performs more tasks.

12




FIGURE 5A

short int Packed2Char( unsigned char *pPack, unsigned char *pChar, short nLen, short odd _length )

/********************************************************************

GS -2/7/97 - generic unpacker of signed data, sign at front or back of the number
Restrictions:
precision must be less than length of field
sign nibble can be first or second nibble of first character, or last nibble of last char
typically D is negative sign, more can be added by changing case statement at bottom routine

arguments:
1. unsigned char pointer to the packed decimal number

2. unsigned char pointer to receive the unpacked digits
3. short int length of argument 1, the packed decimal number.
4. short int flag indicating nibble at the end of pPack

Generically can handle the follow 8 packed datatypes;

Even length signed packed with precision  eg. S9(3)V99 (the sign counts as 1)

without " 89(3)
Odd length " with " S9(2)V99
" without " 892
Even length unsigned packed " " 92
with " 9(2)V99
Odd " " " 9(3)V99
" " without " 9(3)

returns; character buffer with number, including decimal point, sign at end if present
R

int etror=0;
char cBuffer[200];
unsigned char cBufferArea [200];
chat savebuff[200];
char buff[200];
short int iW;
short int il; /* loop index */
unsigned short int  iFirstNib; /* first nibble */
unsigned short int  iLastNib; /* last nibble */
unsigned short int  iSignNib = 0; /*Nibble that contains the sign*/

unsigned chat *pWork; /* wotk pointer for packed number */
unsigned char *cBuffer3; /* work pointer for packed number */
int nDigits=0;

int nlen; /* point%offset to stream */
nDigits=0;

// continued in FIGURE 5B




FIGURE 5B
memset( pChar, \0', (nLen *2) + 1);  /*initialize char array */

pWork = pPack; /* copy pointer to work */
for(il = 1; 1 <= nLen; il++)
{
iFirstNib = (*pWotk & 0xf0 ) >> 4; /* obtain high order 4 bits */
iLastNib = *pWork & 0x0f; /* obtain low otder 4 bits */
if (iFirstNib > 0x09 ) /* check first nibble */
{ // must be a number if not a sign

1SignNib = iFirstNib;
if (I > 1) && (il < nLen))
w_EDC_error_msg("Sign character found where it does not belong... ,1);
}
if ((il == nlen) && (odd_length==1)) //ignore cases where bogus nibble
iLastNib =0; // is found in last nibble of odd length field
if (iLastNib > 0x09)
iSignNib = iLastNib;
if (((tF1rstNib > 0x09)) / /if First nibble is not a number
*(pChar + nDigits++) = iFirstNib | 0x30; // then skip it
if ({(iLastNib > 0x09)) / /if First nibble is not a number
*(pChar + nDigits++) = iLastNib | 0x30; // make ascii character and bump outputpointer
pWork++; // point to the next input byte
} // end for loop
switch (iSignNib ) // make negative if needed

case 0x0f:
*(pChar + nDigits) = '+
break;
case 0xQe:
*(pChar + nDigits) = '+
break;
case 0x0d:
*(pChar + nDigits) = "-'; //negative number
break;
case 0x0c:
*(pChar + nDigits) = '+ // anything else is positive number
break;
case OxOb:
*(pChat + nDigits) = "+%
break;
case 0x0a:
*(pChar + nDigits) = '+
break;
case 0x00:
*(pChar + nDigits-1) = '+
break;
default:
*(pChat + nDigits-1) = '+';
break;
}

return( 0 );

14




NEW PROCESS & COUPLING

The elimination of the extra 3 steps in the old process reduced the loose’ coupling associated with
the file based data coupling. This was by far the largest factor contributing to the coupling metric. In
addition, global variables are no longer being used to define data structures associated with the field
processing. Patameter passing in function headers is the same, ranging from none to 8 variables.
Default values for function header parameters has reduced this coupling factor.

NEW PROCESS & COHESION

The module shown in Figure 4 petformed two functions, and therefore had relatively high
cohesion. The 7 current files each perform one function, therefore they have high cohesion.

NEW PROCESS & SHAPE

The fan-out associated with the new process approaches the pyramidal shape desired. Of the 7
program files in the system, 4 are typically modified during the coding process. File editing navigation
using the Visual C++® environment, or other code editors like Codenright® is simplified by invoking
the control TAB keystroke to move from file to file. This is preferred over the setting of bookmarks,
ot searching for names in one or two large files. A piece of the call tree is shown in Figure 6.

FIGURE 6

main(), in XxXXX.cpp, select file to process

|

disk_input, 1n conv.cpp sets record counters, record type

convert_abc(), in layout.cpp selects field offset, length, type
| Ltable_create(), in orai.c builds table in Oracle

munge.xlate(), In munge.cpp extracts specified data
| l_check_date(), in func.c checks format & compliance

|
Packed2Chat(), in func.c unpacks signed field

NEW PROCESS & REUSE

Module reuse includes 90% of the xxxx.cpp function, 70% of conv.cpp, 30% of layout.cpp, 71% of
putout.cpp, all of munge.cpp, all of func.c, and all of orai.c, and all of the header files. Of the 12,822

15




lines of code in this project, 7648 or 60% is reusable, and has been demonstrated as such in a
subsequent project.

NEW PROCESS & DEFECT CORRECTION
Defect identification within all modules was improved because:
a) One could now specify any starting record number, and break into the debugger at any line.

b) SQL Create table script etrors induced in step 3 of the old process have been eliminated since
these scripts are no longer used.

c) Syntax errors induced in step 4 of the old process ((CTL SQL* Load files) have been totally
eliminated since load files are no longer used.

d) The C++ environment is far better suited than SQLX* Load at defect identification in general.
SQL* Load has no in line messaging or debug capability.

e) The munge object constructed has the capability of detecting Oracle load errors on a field by
field basis. The guesswork associated with row level load errors has been eliminated.

Add or Change a Field using Old Process Add or Change a Field using New Process

code field change code field change

Run Observe Output on the Screen during Run
Examine comma delimited file Examine field in Database

Add field definition to Create Table SQL

Drop/Create table in SQL

Add field to .CTL Load file for SQL* Load
Load using SQL* Load or custom application
Examine SQL* Load logs for errors
Speculate as to field causing load error
Examine field in Database

Because the defect identification capability was pushed much eatlier in the process, hours and even
days of time needed in the past for defect correction have been eliminated. The ten step process
formerly required is now comprised of 3 steps. The principles of integrity degradation observed in all
engineered systems as related to complexity also holds true here. A 300% improvement is a
conservative estimate of the cost or time savings obtained here.

DATATYPES MIGRATED

Input Type

Unsigned Packed 34 65 ‘ +3465 | Number(4,0)

16




Unsigned Packed with precision | 34 65 +34.65 Number(4,2)
Packed Sign in Front 0D 76 54 -7654 Number(4,0)
Pack_e_d Sign in Front with | 0D 76 54 -76.54 Number(4,2)
precision
Packed Sign at Rear 7623 1C +76231 Number(5,0)
Packed Sign at Rear with | 76231C +762.31 Number(5,2)
precision
Unpacked ASCII 34313233 4123 Number(4,0)
Unpacked ASCII with precision | 34 31 32 33 41.23 Number(4,2)
Unpacked EBCDIC F3F2F1 321 Number(3,0)
Unpacked  EBCDIC  with | F3F2 F1 321 Number(3,1)
precision
IBM DOS/VSE unpacked with | F2 F3 C0 +230 Number(3,0)
packed sign
F6 F3 D5 -635

Binary 81 10000001 VARCHAR?2
Block Length Indicator 02 CO 704 Number(8,0)
ASCII 414243 ABC VARCHAR?2

DATE DATATYPES MIGRATED
Packed YYMM packed 3412 - — Decl, 1934 — Daté |
YYYYMMDD packed 19970515 May 15, 1997 Date
MMDDYY packed 013155 Jan 31, 1955 Date
MMDDYY unpacked 30 32 31 3538 36 Feb, 15, 1986 Date
MMYY packed 12 34 Dec1, 1934 Date
Unpacked EBCDIC F2 FO FO F1 FO F9 Sept. 21, 2001 Date




YYYYMMDD F2F1

YYDDD (Julian) packed 8502 90 Jan 29,1985 Date
YYODDD (Julian) packed | 85 00 29 Jan 29, 1985 Date
YYMMDD unpacked 383930353036 May 6, 1989 Date
YYYYDDD packed 19 97 00 32 Feb 1, 1997 Date

YEAR 2000 ISSUES

Dates migrated without Century indicators ate handled with a combination of business rules
regarding the information, and technically with an intelligent date format mask. For example, mortgage
instrument maturity dates with YY=01 will always indicate the year 2001, as will a birth date. Oracle
has a handy date format mask ‘RR’ whose behavior is determined by the current year, and the specified
year.

Year 0 - Year 49 Specified Year 50 - Year 99 Specified
Present year is 00-49 Current Century date returned Century before current century is
returned

Present year is 50 - 99 | Century after current Century | Current Century returned
returned

A Year 2000 date format example from the Oracle7 Server SQIL Language Reference Manual, p. 3-57

SELECT TO_CHAR ( TO_DATE ( 27-OCT-95" , ‘DD-MON-RR’ ), YYYY’) “4-digit- year”
FROM DUAL

4-digit vear

1995

SELECT TO_CHAR ( TO_DATE ( 27-OCT-17 , ‘DD-MON-RR’ ), ’YYYY’) “4-digit- year”
FROM DUAL

4-digit year
2017

18




CONCLUSIONS

The application of some basic software engineering principles to the data migration process is not a
complicated task. All you really need are three things;

1. Sponsorship: A high level manager with a commitment to quality.
2. A Champion: You or 1 or more of your team members.

3. Doing Itl: Getting the work done.

Guy Simonian lives and works in West Hartford, Ct, with his wife Darlene and their dog, Smudge.
You can reach him by writing to cotal@delphi.com.

! Deming, W. E. Ot of the Crisis, Cambridge, MA: MIT Center for Advanced Engineering Study, 1982.
2 Martin, James & McClure, Carma STRUCTURED TECHNIQUES: The Basis for CASE, Prentice Hall 1988, p. 75-77
3 Grady, Robert B. Practical S oftware Metrics for Project Management and Process Improvement, Prentice-Hall 1992, p. 232

4 Miller, G. “The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information,” The
Psychological Review, 1956

5 Yourdon, Ed & Constantine, Larry Structured Design, Yourdon Press 1975, p. 95-126
6 Martin, James & Odell, James Object-Onriented Analysis and Design, Prentice Hall, 1992, p. 37

7 Grady, p. 202

19




